MECÂNICA GRACELI GENERALIZADA





ψ     [ / ]   /[]

  ) [,] / [    ]     .


ψ     [ / ]   /[ (Z)]

  ) [,] / [    ]     .




ψ        / [ [ []  ] ]    .




   / ]]   ) [[ ][]

ψ] ]  .



 ψ   / [ [ ] []

 ] ψ] /    .


ψ    ) [[ ][

]

ψ] .   . 






ψ         [ [ ][]

 ]   .



 ψ        [ [ ]]]

 
ψ]]   .




ψ       / [ 

[ ] [ e qe,]] ]    .






ψ   / [ [ ]]]

ψ] /     .




*  [ ]]

ψ[
 e qe,.] / ] ]] .








    [[ ]]/

] [
.]
ψ]] .





ψ [[ ]]

 ].]]

ψ]/ ]  .










  / [ [ ]]

.]ψ ]  .




ψ      [  [ ] []

  ψ ] / ]    .






ψ     []

] /      [[ ]]     .






ψ  [[[ ]]  ) [

ψ []]










ψ     [ [[ ]]

  ) []] /  ψ     .



   [[ ]] /   ].

, ] / ψ   .

magnetão de Bohr, referido em alguns textos como magneton de Bohr, (símbolo ) é uma constante física relacionada com o momento magnético que recebe seu nome do físico Niels Bohr. Pode ser expresso em térmos de outras constantes elementares como:

onde:

 é a carga elementar,
 é a constante de Planck reduzida,
 é a massa em repouso do elétron

No sistema internacional de unidades se valor é aproximadamente:

 = 9,274 008 99(37)·10-24 J·T-1

No sistema CGS de unidades seu valor é aproximadamente:

 = 9,274 008 99(37)·10-21 erg·G-1




  •  é a massa da partícula.
  •  é a carga da partícula.
  •  é um vetor de três componentes do dois-por-dois das matrizes de Pauli. Isto significa que cada componente do vetor é uma matriz de Pauli.
  •  é o vetor de três componentes da dinâmica dos operadores. Os componentes desses vetores são: 
  •  é o vetor de três componentes do potencial magnético.
  •  é o potencial escalar elétrico.

[ ]







Na física atômica, o átomo de Bohr é um modelo que descreve o átomo como um núcleo pequeno e carregado positivamente cercado por elétrons em órbita circular.[1]

Um modelo do átomo de Bohr
Um exemplo do modelo atômico de Bohr

Ernest Rutherford, no início do século XX, realiza o experimento conhecido como espalhamento de Rutherford ,[2] no qual ele incidiu um feixe de partículas alfa (α) sobre uma folha de ouro e observou que, ao contrário do que era esperado - que as partículas deveriam ser refletidas pelos átomos de ouro considerados maciços até então -, muitas partículas atravessaram a folha de ouro e outras sofreram desvios. A partir da análise dessa experiência, afirmou que átomos eram constituídos de uma nuvem difusa de elétrons carregados negativamente que circundavam um núcleo atômico denso, pequeno e carregado positivamente.[1]

A partir dessa descrição, é fácil deixar-se induzir por uma concepção de um modelo planetário para o átomo, com elétrons orbitando ao redor do "núcleo-sol". Porém, a aberração mais séria desse modelo é a perda de energia dos elétrons através da radiação síncrotron: uma partícula carregada eletricamente ao ser acelerada emite radiações eletromagnéticas que têm energia; fosse assim, ao orbitar em torno do núcleo atômico, o elétron deveria gradativamente emitir radiações e cada vez mais aproximar-se do núcleo, em uma órbita espiralada, até finalmente chocar-se contra ele. Um cálculo rápido mostra que isso deveria ocorrer quase que instantaneamente.

Postulado de Bohr

[editar | editar código fonte]

Niels Bohr

Através das descrições quânticas da radiação eletromagnética propostas por Albert Einstein e Max Planck, o físico dinamarquês Niels Bohr desenvolve seu modelo atômico a partir de quatro postulados:[3]

  1. Os elétrons que circundam o núcleo atômico existem em órbitas que têm níveis de energia quantizados.
  2. A energia total do elétron (cinética e potencial) não pode apresentar um valor qualquer e sim, valores múltiplos de um quantum.[1]
  3. Quando ocorre o salto de um elétron entre órbitas, a diferença de energia é emitida (ou suprida) por um simples quantum de luz (também chamado de fóton), que tem energia exatamente igual à diferença de energia entre as órbitas em questão.
  4. As órbitas permitidas dependem de valores quantizados (bem definidos) de momento angular orbital, L, de acordo com a equação

onde n = 1, 2, 3, ... é chamado de número quântico principal e h é a constante de Planck.[4]

A regra 4 afirma que o menor valor possível de n é 1. Isto corresponde ao menor raio atômico possível, de 0,0529 nm, valor também conhecido como raio de Bohr. Nenhum elétron pode aproximar-se mais do núcleo do que essa distância.

O modelo de átomo de Bohr é às vezes chamado de modelo semi-clássico do átomo, porque agrega algumas condições de quantização primitiva a um tratamento de mecânica clássica. Este modelo certamente não é uma descrição mecânica quântica completa do átomo. A regra 2 diz que as leis da mecânica clássica não valem durante um salto quântico, mas não explica que leis devem substituir a mecânica clássica nesta circunstância. A regra 4 diz que o momento angular é quantizado, mas não diz por quê.

Expressão para o raio de Bohr

[editar | editar código fonte]

Considere o caso de um íon com a carga do núcleo sendo Ze e um eléctron movendo-se com velocidade constante v ao longo de um círculo de raio r com centro no núcleo.[5]

força de Coulomb sobre o electrão é

A força de Coulomb é a força centrípeta. Logo:

Usando a regra de quantização do momento angular de Bohr:

Temos para o n-ésimo raio de Bohr:

E a velocidade do electrão na n-ésima órbita:

Equação de Rydberg

[editar | editar código fonte]

equação de Rydberg, que era conhecida empiricamente antes da equação de Bohr, está agora na teoria de Bohr para descrever as energias de transições entre um nível de energia orbital e outro. A equação de Bohr dá o valor numérico da já conhecida e medida constante de Rydberg, e agora em termos de uma constante fundamental da natureza, inclui-se a carga do elétron e a constante de Planck.[1] Quando o elétron é movido do seu nível de energia original para um superior e, em seguida, recua um nível retornando à posição original, resulta num fóton a ser emitido. Usando a fórmula derivada para os diferentes níveis de energia de hidrogênio, determinam-se os comprimentos de onda da luz que um átomo de hidrogênio pode emitir. A energia de um fóton emitido por um átomo de hidrogênio é determinado pela diferença de dois níveis de energia de hidrogênio:[1]

onde ni é o nível inicial , e nf é o nível final de energia. Uma vez que a energia de um fóton está

o comprimento de onda do fóton emitido é dada pela

Isto é conhecido como a equação de Rydberg, e o R da constante Rydberg é  , ou  em unidades naturais . Esta equação foi conhecida no século XIX pelos cientistas que estudavam a espectroscopia, mas não havia nenhuma explicação teórica para estas equações ou uma previsão teórica para o valor de R, até Bohr. A propósito, a derivação de Bohr da constante Rydberg, bem como o acordo concomitante da equação de Bohr com as experimentalmente observadas linhas espectrais de Lyman (), Balmer (), e Paschen (), e a previsão teórica bem sucedida de outras linhas ainda não observadas, foi uma das razões para o seu modelo ser imediatamente aceito. Para aplicar em átomos com mais de um elétron, a equação de Rydberg pode ser modificada pela substituição de "Z" por "Z - b" ou "n" por "n - b", em que b é uma constante que representa o efeito de triagem devido a outros elétrons. Isto foi estabelecido empiricamente antes de Bohr apresentar seu modelo.[6]

Níveis energéticos dos elétrons em um átomo de hidrogênio

[editar | editar código fonte]

O modelo do átomo de Bohr explica bem o comportamento do átomo de hidrogênio e do átomo de hélio ionizado, mas é insuficiente para átomos com mais de um elétron.

Segue abaixo um desenvolvimento do modelo de Bohr que demonstra os níveis de energia no hidrogênio.

Sejam as seguintes convenções:

1. Todas as partículas são como ondas e, assim, o comprimento de onda do elétron, está relacionado à sua velocidade por

onde h é a constante de Planck e me, a massa do elétron. Bohr não tinha levantado esta hipótese porque só depois é que foi proposto o conceito associado a esta afirmação (veja dualidade onda-partícula). Porém, permite chegar na próxima afirmação.

2. A circunferência da órbita do elétron deve ser um múltiplo inteiro de seu comprimento de onda:

onde r é o raio da órbita do elétron e n, um número inteiro positivo.

3. O elétron mantém-se em órbita por forças eletrostáticas. Isto é, a força eletrostática é igual à força centrípeta:

onde  e qe, a carga elétrica do elétron.

Temos três equações e três incógnitas: v e r. Depois de manipulações algébricas para obter v em função das outras variáveis, pode-se substituir as soluções na equação da energia total do elétron:

Pelo teorema do virial, a energia total simplifica-se para

Ou, depois de substituídos os valores das constantes:[7]

Assim, o menor nível de energia do hidrogênio (n = 1) é cerca de -13.6 eV. O próximo nível de energia (n = 2) é -3.4 eV. O terceiro (n = 3), -1.51 eV, e assim por diante. Note que estas energias são menores que zero, o que significa que o elétron está em um estado de ligação com o próton presente no núcleo. Estados de energia positiva correspondem ao átomo ionizado, no qual o elétron não está mais ligado, mas em um estado desagregado.

O modelo atômico de Bohr pode ser facilmente usado para a composição do modelo atômico de Linus Pauling. Apenas somando as camadas e as colocando na ordem de Pauling.

Frequência

[editar | editar código fonte]

A frequência orbital[5]

 (X)

Onde  é a velocidade angular orbital do elétron.

A partir da equação acima, que descreve o movimento orbital mantido pela força de Coulomb, podemos inferir:

Substituindo esta expressão na Equação (X) temos:

 (Z)

Para o átomo - , a qual está na região ultravioleta do espectro electromagnético.

Se o elétron irradia, a energia E irá decrescer tornando-se cada vez negativa e a partir da Equação do raio da órbita r também diminui. O decréscimo em r na Equação (Z), provoca um aumento na frequência f.

De modo que temos um efeito de pista que quando a energia é irradiada, E diminui, o raio orbital r diminui, a qual por sua vez causa um aumento da frequência orbital f e aumentando continuamente a frequência irradiada.

Este modelo planetário prevê que o electrão se mova em espiral para dentro em direção ao núcleo, emitindo um espectro contínuo. Calcula-se que este processo não dure mais do que , um tempo muito curto na verdade.

Comentários

Postagens mais visitadas deste blog